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Abstract—In cognitive radio, spectrum sensing is a fundamen-
tal task and is used to detect primary user. Energy detection is a
popular spectrum sensing technique. But detection performance
of energy detector (ED) deteriorates in low signal-to-noise ratio
(SNR) conditions and under noise uncertainty. In this paper, we
study generalized energy detector (GED), obtained by replac-
ing squaring operation of amplitude of the received signal in
conventional energy detector (CED) with an arbitrary positive
power operation p under noise uncertainty. For the worst case
of noise uncertainty we analytically show that SNR wall is not
dependent on the value of p. We further investigate the detection
performance of GED for different values of p under uniformly
distributed noise uncertainty and show that CED is the best ED
under noise uncertainty. We also show that at noise uncertainty
greater than 0.5 dB, the performance gap between different EDs
almost vanishes and the detection performances of all EDs almost
become the same for all values of p.

I. INTRODUCTION

Cognitive radio [1], [2] is an exciting emerging paradigm
which may be considered as a solution to inefficient usage
[3] of fixed allocated licensed frequency spectrum. Significant
improvement in spectrum utilization can be achieved by allow-
ing an unlicensed or secondary user (SU) to access a licensed
frequency band when the licensed or primary user (PU) is
absent. In cognitive radio, SU senses an idle frequency band
of a PU, and if a band is found to be idle, SU may transmit
over that band. But as soon as PU returns, SU must vacate
the band immediately. This complete process requires accurate
spectrum sensing to avoid harmful interference to PU.

There are quite a few sensing methods that have been
proposed, like likelihood ratio test [4], matched filtering based
detection [4], cyclostationary detection [5], covariance based
detection [6], eigenvalue based detection [7] and energy de-
tection (ED) [4], [8], [9]. ED requires no a priori knowledge
about primary signals. Also ED is less complex and easy
to implement than the other spectrum sensing techniques.
Conventional energy detector (CED) [8] can be generalized
by replacing squaring operation of received signal amplitude
by an arbitrary positive power operation constant p [10]. We
call this modified ED as generalized energy detector (GED).
Then CED becomes a special case of GED with p = 2. We
briefly review CED and GED in section II. In [10], [11], [12],
it has been shown that detection performance of SU may be
improved by choosing a suitable value for p and this chosen

value of p may not be equal to 2 i.e. CED may not be the
best ED.

In GED, the test statistic is compared with a predetermined
threshold to take a decision on presence or absence of PU.
To calculate threshold accurately one needs exact knowledge
of noise power/variance. With noise power known precisely,
theoretically it is possible for ED to detect the presence of
PU even at very low SNR if the sensing time is made very
large. But in practice, noise power may change with time
and location. Therefore it may not be possible to measure
exact noise power at a particular time and location. In [13],
[14], the effect of worst case noise uncertainty on CED has
been studied in detail. The worst case of noise uncertainty is
considered assuming that the noise power is constrained to
the limited range where only upper and lower bound on noise
variance are known to the detector. In [14], it has been proved
by the authors that if noise variance is not known exactly
and confined to an interval, the phenomenon known as SNR
wall exists, for which targeted detection performance cannot
be achieved regardless of the sensing time and ED does not
remain an effective detection method under noise uncertainty.

In [15], authors have analysed the performance of CED
under the assumption that noise uncertainty is uniformly
distributed. In [16], discrete and continuous forms of the
noise uncertainty model are proposed and it is shown that
choosing different statistical decision threshold results in dif-
ferent detection performance. Log-Normal approximated noise
uncertainty is assumed for CED in [17]. In [18], authors
perform asymptotic analysis of noise power estimation for
CED. The conditions for the existence of SNR wall are derived
and effect of noise power estimation on detection performance
of CED is studied.

In this paper, we primarily build on [10], [14] and [15]. We
study the performance of GED under noise uncertainty. We
analytically show that for the worst case of noise uncertainty
described in [14], SNR wall is independent of power constant
p. The performance of GED is also shown for uniform
distribution of noise uncertainty [15]. We also show that CED
(p = 2) is the best ED under noise uncertainty. But when the
noise uncertainty is absent, the best ED may be different than
CED. We further numerically show that if the noise uncertainty
is significant (greater than 0.5 dB), then there is a very little
effect of p on the detection performance of GED.978-1-4673-5952-8/13/$31.00 c© 2013 IEEE



The rest of the paper is organized as follows. In section
II, we describe the system model and briefly review the
concepts of conventional energy detection and its extension to
generalized energy detection. Section III has been divided into
two parts. The first part shows analytically that for the worst
case of noise uncertainty considered in [14] for GED, SNR
wall remains the same irrespective of value of power constant
p. In the second part, uniform distribution of noise uncertainty
is considered for GED. We provide expressions of average
probability of detection and average probability of false alarm
which can be evaluated numerically. In section IV, we provide
numerical results. We evaluate the detection performance
for various system parameters like power constant p, noise
uncertainty and SNR. Finally conclusions are drawn in section
V.

II. BACKGROUND

In cognitive radio, PU detection is a binary hypothesis
problem in classical detection theory [4] which is given as

y(n) =
{

hs(n) + w(n), H1

w(n), H0
(1)

where n = 1, . . . , N indexes the samples of received signal
by SU, y(n) is the nth received signal sample by SU, s(n) is
the nth unknown primary signal sample, h represents fading
channel coefficients of the propagation channel between PU
and SU and w(n) is additive white Gaussian noise (AWGN)
with mean zero and variance σ2. H1 and H0 are the hypotheses
corresponding to presence and absence of PU respectively. The
average power of primary signal is σ2

s . We assume that primary
signal is independent of noise and fading. It is considered that
primary signal samples are independent. Noise samples are
also assumed to be independent. For simplicity, we consider
primary signal, fading coefficients and noise are real number.
Extension of the results for complex signals can easily be done.

The aim of spectrum sensing is to decide the presence or
absence of PU based on aforementioned binary hypothesis
problem (choose H1 or H0). The decision is taken based on
received signal by the secondary user. Spectrum sensing algo-
rithm performance is generally measured by two probabilities:
Probability of detection (PD) and probability of false alarm
(PFA) which are defined as

PD = Pr(H1|H1) (2)
PFA = Pr(H1|H0) (3)

Thus the probability of detection is the probability of choosing
H1 when the true hypothesis is H1 and probability of false
is the probability of choosing H1 when the true hypothesis is
H0. A good sensing algorithm is the one that achieves high
probability of detection and low probability of false alarm, for
a given number of samples.

In this paper, the detection method used for spectrum sens-
ing is energy detection since it does not require prior knowl-
edge of primary signals and is easy to implement because
of low complexity. In conventional energy detector (CED),
the received signal samples are first squared, then summed

over the number of samples collected and then compared with
a predetermined threshold to take decision on presence or
absence of PU. The test statistic TCED for conventional energy
detector is given as

TCED =
1
N

N∑
n=1

|y(n)|2 (4)

where N is the number of samples.
We can transform conventional energy detector to general-

ized energy detector [10] by replacing squaring operation by
an arbitrary positive operation p. Then the test statistic for
GED is given as

TGED =
1
N

N∑
n=1

|y(n)|p (5)

where p > 0 is an arbitrary constant. It can be seen that CED
is a special case of GED with p = 2.

For large N and thus invoking central limit theorem (CLT)
[15], we can define probability of detection PD and probability
of false alarm PFA for GED as

PD = Pr(TGED > T |H1) = Q

(
T − µ1

σ1/
√

N

)
(6)

and

PFA = Pr(TGED > T |H0) = Q

(
T − µ0

σ0/
√

N

)
(7)

where
Q(t) =

1√
2π

∫ ∞

t

e−(x2/2)dx (8)

and T is the predetermined threshold which can be obtained
by fixing probability of false alarm, µ1 and µ0 are means of
TGED under H1 and H0 respectively, σ2

1 and σ2
0 are variances

of TGED under H1 and H0 respectively, which can be given
as [10]

µ0 =
2p/2

√
π

Γ
(

p + 1
2

)
σp (9)

σ2
0 =

2p

√
π

[
Γ

(
2p + 1

2

)
− 1√

π
Γ2

(
p + 1

2

)]
σ2p (10)

µ1 =
2p/2(1 + γ)p/2

√
π

Γ
(

p + 1
2

)
σp (11)

σ2
1 =

2p(1 + γ)p

√
π

[
Γ

(
2p + 1

2

)
− 1√

π
Γ2

(
p + 1

2

)]
σ2p

(12)

with γ is average received signal-to-noise ratio (ASNR).

III. NOISE UNCERTAINTY MODEL FOR GENERALIZED
ENERGY DETECTOR

From (6), (7), (9), (10), (11) and (12), it can be seen that PD

and PFA depend on the threshold T and noise variance σ2, and
to set the threshold one needs exact knowledge of noise power.
In general it is assumed that noise power is known a priori.



But in practical scenario this is not the case. Variance/power of
white noise is the only parameter on which noise distribution
is dependent. However, as mentioned earlier, in practice there
exists noise uncertainty [14] since noise power may change
with time and location and is not known exactly. The presence
of noise uncertainty makes it very difficult to obtain exact
noise power at a particular time and location.

A. Worst Case of Noise Uncertainty

In this section, we consider the worst case of noise uncer-
tainty proposed in [14] where only upper and lower bound on
noise uncertainty are known.

Definition 1 (SNR wall): SNR wall is the minimum SNR
below which spectrum sensing cannot be performed reliably
i.e. probability of detection becomes smaller than 0.5 and/or
probability of false alarm becomes greater than 0.5 [14].

We state a theorem as

Theorem 1. If only upper and lower bound on noise uncer-
tainty are known for GED, then SNR wall is independent of
value of p.

Proof: We assume that uncertainty in noise power is
distributed in a single interval σ2 ∈ [

(1/ρ)σ̂2
w, ρσ̂2

w

]
as

mentioned in [14] where σ̂2
w is the expected/average noise

power and ρ > 1 is a noise uncertainty parameter. Then PD

and PFA can be written as

PD = min
σ2∈[(1/ρ)σ̂2

w,ρσ̂2
w]

Q

(
T − µ1

σ1/
√

N

)
(13)

and
PFA = max

σ2∈[(1/ρ)σ̂2
w,ρσ̂2

w]
Q

(
T − µ0

σ0/
√

N

)
(14)

where µ0, σ2
0 , µ1 and σ2

1 are given by (9), (10), (11) and (12)
respectively.

Eliminating T , we can write

N =

[
σ0Q

−1(PFA)− σ1Q
−1(PD)

]2
(µ1 − µ0)2

(15)

From above equation, it can be easily seen that N → ∞ as
µ1 → µ0. Thus it is not possible to achieve target PD and
PFA robustly if µ1 ≤ µ0, giving rise to a phenomenon known
as “SNR wall” as described below.

For the worst case of noise uncertainty, mentioned above,
we can write µ0 and µ1 for GED using (9) and (11) as

µ0 =
2p/2

√
π

Γ
(

p + 1
2

)
ρp/2σ̂p

w (16)

µ1 =
2p/2

√
π

Γ
(

p + 1
2

)(
1
ρ

)p/2

σ̂p
w

(
1 +

ρσ2
s

σ̂2
w

)p/2

(17)

where σ2
s is average power of primary signal.

We can write the condition µ1 ≤ µ0 as

ρp/2 ≤
(

1
ρ

)p/2 (
1 +

ρσ2
s

σ̂2
w

)p/2

(18)

⇒ γ ≤ (ρ− (1/ρ)) (19)

with γ = σ2
s/σ̂2

w, average received SNR (ASNR). From (19),
it can be seen that if average SNR is less than the uncertainty
in noise power, then primary signal cannot be detected reliably,
which corresponds to the SNR wall. The SNR wall for GED
shown in (19) is exactly the same as the SNR wall for CED
shown in [14]. Thus we can claim that for the worst case of
noise uncertainty, SNR wall is independent of p and there is
no performance change in terms of SNR wall with p.

B. Noise Uncertainty With Uniform Distribution

In this section, we build up on [15] by analysing per-
formance of generalized energy detectors under uniformly
distributed noise uncertainty.

In practice, the average noise power is known. Let the
average noise power be σ̂2

w. At a fixed time and location, let
the actual noise power be σ2

w which may be different from
than that of the average noise power σ̂2

w, which gives rise to
the noise uncertainty. So we can define the noise uncertainty

factor as β =
σ̂2

w

σ2
w

. Let the upper bound on noise uncertainty

factor in dB be L which is defined as

L = sup{10 log10 β} (20)

We assume that noise uncertainty factor β in dB is uni-
formly distributed in the range [-L, L] [14]. This means β
is restricted in [10−L/10, 10L/10]. In practice normally the
upper bound on noise uncertainty is below 2 dB. Now as β
(in dB) i.e. 10 log10 β is uniformly distributed in [-L, L], the
probability density function (pdf) of β can be given by using
simple transformation of random variable as

fβ(x) =





0, x < 10−L/10

5
ln(10)Lx

, 10−L/10 < x < 10L/10

0, x > 10L/10

(21)

where ln(z) is natural logarithm of z.
Let kσ̂2

w be the threshold for GED, where k is constant and
σ̂2

w is average noise power as defined earlier. Thus actual noise

power is σ2
w =

σ̂2
w

β
. Also γ =

σ2
s

σ̂2
w

is the average received SNR.

For this set-up, means (µ0,nu, µ1,nu) and variances (σ2
0,nu,

σ2
1,nu) under H0 and H1 for TGED can be obtained from

(9)-(12) by replacing σ with σw and adding noise uncertainty
factor β, and are given as

µ0,nu =
2p/2

√
π

Γ
(

p + 1
2

)
σp

w (22)

σ2
0,nu =

2p

√
π

[
Γ

(
2p + 1

2

)
− 1√

π
Γ2

(
p + 1

2

)]
σ2p

w (23)

µ1,nu =
2p/2(1 + βγ)p/2

√
π

Γ
(

p + 1
2

)
σp

w (24)

σ2
1,nu =

2p(1 + βγ)p

√
π

[
Γ

(
2p + 1

2

)
− 1√

π
Γ2

(
p + 1

2

)]
σ2p

w

(25)



Let us define

Gp =
2p/2

√
π

Γ
(

p + 1
2

)
(26)

and

Kp =
2p

√
π

[
Γ

(
2p + 1

2

)
− 1√

π
Γ2

(
p + 1

2

)]
(27)

Then the probability of detection PD and probability of false
alarm PFA for fixed β can be given from (6), (7) and (22)-(27)
as

PD = Pr(TGED > kσ̂2
w|H1)

= Q

((
kβp/2 −Gp(1 + βγ)p/2

(1 + βγ)p/2

) √
N

Kp

)
(28)

and

PFA = Pr(TGED > kσ̂2
w|H0)

= Q

((
kβp/2 −Gp

) √
N

Kp

)
(29)

Now we can get average probability of detection P̄D and
average probability of false alarm P̄FA by averaging over noise
uncertainty factor β, using (21), (28) and (29) as

P̄D =

∫ ∞

−∞
Q

((
kxp/2 −Gp(1 + xγ)p/2

(1 + xγ)p/2

) √
N

Kp

)
fβ(x)dx

=

∫ 10L/10

10−L/10
Q

((
kxp/2 −Gp(1 + xγ)p/2

(1 + xγ)p/2

) √
N

Kp

)

5

ln(10)Lx
dx (30)

and

P̄FA =

∫ ∞

−∞
Q

((
kxp/2 −Gp

) √
N

Kp

)
fβ(x)dx

=

∫ 10L/10

10−L/10
Q

((
kxp/2 −Gp

) √
N

Kp

)
5

ln(10)Lx
dx

(31)

Since (30) and (31) cannot be obtained in closed form, we
evaluate them numerically.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we present our numerical results to describe
the performance of generalized energy detector and effect of
noise uncertainty on it.

Fig. 1 shows receiver operating characteristic (ROC) curve
where average probability of detection P̄D is plotted against
average probability of false alarm P̄FA for different values of
p with noise uncertainty L = 0.1 dB, N = 10000 and ASNR =
-15 dB. It can be seen that the best energy detector that gives
rise to maximum area under ROC curve is the one with p = 2,
that is, CED. For any values of p other than 2, the detection
performance degrades compared to that of CED. This can also
be verified from Fig. 2 where P̄D is plotted against ASNR for
fixed P̄FA. CED (p = 2) is the best energy detector among all
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Fig. 1. ROC curve for different values of p for L = 0.1 dB, N = 10000,
ASNR = -15 dB.
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Fig. 2. P̄D vs. ASNR (dB) for different values of p for L = 0.1 dB, N =
10000, P̄FA = 0.1.

energy detectors and the detection performance degrades as p
deviates from 2.

Fig. 3 compares energy detectors with p = 2 and p = 5 for
the cases when there is no noise uncertainty (L = 0 dB), L =
0.2 dB and L = 0.5 dB. When there is no noise uncertainty, the
detection performance gap between GED with p = 2 and GED
with p = 5 is large, former performing better than that of the
latter. But as the noise certainty increases, the performance gap
decreases. For significant noise uncertainty (L ≥ 0.5 dB), this
gap is negligible and all energy detectors perform almost the
same, that is, the detection performance becomes independent
of p for significantly large noise uncertainty.

Fig. 4 shows the variation of P̄D versus power constant p for
L = 0.1 dB, L = 0.25 dB and no noise uncertainty (L = 0 dB)
with P̄FA = 0.1, N = 10000 and ASNR = -15 dB. We consider
two cases: The first, when noise uncertainty is present and the
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Fig. 4. P̄D vs. p for L = 0.1 dB, 0.25 dB for P̄FA = 0.1, N = 10000,
ASNR = -15 dB.

second, when there is no noise uncertainty. For the first case,
from Fig. 4, it can be verified that GED with p = 2 is the best
detector for both L = 0.1 dB and L = 0.25 dB. For L = 0.1
dB, the detection performance degrades significantly as the p
deviates from 2. For p = 2, P̄D is 0.6262 which deteriorates to
0.5773 for p = 4. However, for L = 0.25 dB, P̄D deteriorates
not significantly, from 0.3496 to 0.3380 as p changes from 2
to 4. This highlights the fact that more the noise uncertainty,
lesser is the effect of p on the detection performance and
with significantly high value of noise uncertainty, the detection
performance becomes independent of p, which is also shown
in Fig. 3. Also it can be observed from Fig. 4 that when there
is no noise uncertainty, the best ED that has the maximum
P̄D, corresponds to p = 2.1 and CED (p = 2) is not the best
ED. But when the noise uncertainty is present, CED is the
best ED .

V. CONCLUSION

In this paper, the detection performance of generalized
energy detector is analysed, under the worst case of noise
uncertainty and under the assumption that noise uncertainty is
uniformly distributed. For the worst case of noise uncertainty,
analytically it is shown that SNR wall remains unchanged for
all values of p. Under the noise uncertainty with uniform distri-
bution, generalized energy detector with p = 2 i.e. conventional
energy detector, is the best energy detector. But conventional
energy detector may not be the best energy detector in the
absence of noise uncertainty. Also as the noise uncertainty
increases and becomes significant (generally greater than 0.5
dB), the detection performance of generalized energy detector
becomes independent of p.
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